An epidemiological model for West Nile virus: invasion analysis and control applications

Marjorie J. Wonham, Tomás de-Camino-Beck and Mark A. Lewis

References

Article cited in:
http://rspb.royalsocietypublishing.org/content/271/1538/501#related-urls

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Proc. R. Soc. Lond. B go to: http://rspb.royalsocietypublishing.org/subscriptions
An epidemiological model for West Nile virus: invasion analysis and control applications

Marjorie J. Wonham1,2,3*, Tomás de-Camino-Beck1 and Mark A. Lewis1,2

1Department of Biological Sciences, and 2Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
3Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada

Infectious diseases present ecological and public health challenges that can be addressed with mathematical models. Certain pathogens, however, including the emerging West Nile virus (WN) in North America, exhibit a complex seasonal ecology that is not readily analysed with standard epidemiological methods. We develop a single-season susceptible–infectious–removed (SIR) model of WN cross-infection between birds and mosquitoes, incorporating specific features unique to WN ecology. We obtain the disease reproduction number, R_0, and show that mosquito control decreases, but bird control increases, the chance of an outbreak. We provide a simple new analytical and graphical method for determining, from standard public health indicators, necessary mosquito control levels. We extend this method to a seasonally variable mosquito population and outline a multi-year model framework. The model’s numerical simulations predict disease levels that are consistent with independent data.

Keywords: arbovirus; emerging infectious disease; outbreak threshold; public health; reproduction number

1. INTRODUCTION

Emerging infectious diseases are a growing agent of global change that present compelling challenges in public health, agriculture and wildlife management (Blower & McLean 1991; Binder et al. 1999; Keeling et al. 2001). Arthropod-borne diseases including West Nile virus (WN) provide unique opportunities to explore the ecological links between host and vector species. Translating this ecology into a dynamic model allows the evaluation of different control strategies (Anderson & May 1991). At the same time, however, a biologically realistic model of seasonal host–vector cross-infection is necessarily complicated and not necessarily amenable to classical analysis. As we show here, the application of new graphical methods can simplify the calculation of threshold parameters controlling disease outbreak.

We focus on the emerging WN epidemic in North America, which has been exceptionally well documented at both host and vector levels. The virus is widespread in Africa, the Middle East and western Asia, with occasional European outbreaks introduced by migrating birds (Hayes 1988; Rappole et al. 2000). In North America, the first recorded epidemic was initially detected in New York state in 1999 and spread rapidly across the continent causing unprecedented bird, horse and human mortality attributed to a highly virulent emerging virus strain (Anderson et al. 1999; Petersen & Roehrig 2001). Control strategies focus primarily on the eradication of vector mosquitoes (New York City 2003). We develop the simplest possible biologically relevant ordinary differential equations model for WN transmission, obtain the disease basic reproduction number R_0 (Anderson & May 1991), determine outbreak criteria and graphically relate virus detection and control metrics.

2. MODEL DESCRIPTION

Like many arboviruses, WN persists in natural transmission cycles between vectors (mosquitoes) and reservoir hosts (birds). Mammals are secondary hosts generally considered unimportant to disease persistence in the wild (Hayes 1988). We therefore focused only on cross-infection between birds and mosquitoes. Understanding this simplified system has clear implications for disease management in mammalian hosts, including humans.

To account for time-scales specific to WN, we extended the classical SIR differential-equation model for malaria transmission (Anderson & May 1991; Thomas & Urena 2001) to an eight-compartment model describing WN cross-infection in one season (figure 1). The dimensional equations for this dynamic system (equations (2.1)) describe susceptible (S), infectious (I), recovered (R) and dead (X) birds, where the total live bird population is $N_B = (S_B + I_B + R_B)$, and larval (L_M), susceptible (S_M), exposed (E_M) and infectious (I_M) female mosquitoes, where the total female mosquito population is $N_M = (L_M + S_M + E_M + I_M)$ (figure 1) (all parameters are defined in table 1):

$$\frac{dS_B}{dt} = -abI_MS_B \frac{S_B}{N_B} \quad (2.1a)$$

$$\frac{dI_B}{dt} = abI_MS_B - \mu_v I_B - gI_B \quad (2.1b)$$

$$\frac{dR_B}{dt} = gI_B \quad (2.1c)$$

$$\frac{dX_B}{dt} = \mu_v I_B \quad (2.1d)$$
The following WN-specific elements are, we believe, essential to capturing the disease dynamics. The larval mosquito class \(L_{\text{M}} \) encompasses all stages from egg to adult emergence (ca. 15 days), during which individuals are not involved in virus cross-infection. The exposed class, \(E_{\text{M}} \), reflects the viral incubation period (ca. 8–12 days), which has been reported in mosquitoes but not birds (Sende et al. 2000; Langevin et al. 2001; Sardelis & Turell 2001; Swane et al. 2001a,b; Turell et al. 2001). These two classes together can constitute 50–60% of the total mosquito lifespan in north-temperate populations. We omit a removed mosquito class since vectors are not known to respond to WN infection and their viraemia profile remains to be determined.

Cross-infection between birds and mosquitoes is modelled as mass-action kinetics normalized by bird density. This follows Anderson & May (1991) in assuming a saturated functional response of mosquito biting rate to bird density. The model considers a single season from spring to autumn, so vital dynamics are included for mosquitoes but not for birds. Disease mortality and recovery in birds, and vital dynamics in mosquitoes, are modelled as density independent. We further assume for this simple model that vertical transmission in mosquitoes and horizontal transmission in birds are negligible (cf. Langevin et al. 2001; McLean et al. 2001; Nasci et al. 2001; Turell et al. 2001).

3. MODEL ANALYSIS

To non-dimensionalize the WN system we scaled time, \(\tau \), with the quantity \(1/k \) by setting \(\tau = kt \), scaled all parameters to \(k \) (table 1) and scaled bird and mosquito numbers by the initial bird population, \(N_{\text{B}0} \). In the resulting dimensionless system (equations (3.1)), the four bird population, \(s_{\text{B}}, l_{\text{B}}, i_{\text{B}}, r_{\text{B}} \), and the four mosquito compartments, \(s_{\text{M}}, l_{\text{M}}, i_{\text{M}}, r_{\text{M}} \), indicate the fractions of the initial population in the susceptible, infectious, recovered, and dead classes, respectively, where the total live bird population, \(N_{\text{B}0} \), is \(0 < n_{\text{B}} = (s_{\text{B}} + l_{\text{B}} + r_{\text{B}}) \leq 1 \). The four mosquito compartments, \(s_{\text{M}}, l_{\text{M}}, i_{\text{M}}, r_{\text{M}} \), represent larval, susceptible, exposed and infectious females, respectively, scaled to the initial number of birds, where the total female mosquito population, \(n_{\text{M}} \), is \(0 < n_{\text{M}} = (l_{\text{M}} + s_{\text{M}} + e_{\text{M}} + i_{\text{M}}) \). The rescaled system is

\[
\frac{ds_{\text{M}}}{d\tau} = -\alpha s_{\text{M}} \frac{s_{\text{B}}}{n_{\text{B}}}, \quad \frac{dl_{\text{M}}}{d\tau} = \alpha s_{\text{M}} \frac{s_{\text{B}}}{n_{\text{B}}} - \mu_{\text{L}} l_{\text{M}} - \gamma_{\text{L}0}, \quad \frac{di_{\text{M}}}{d\tau} = \alpha s_{\text{M}} \frac{s_{\text{B}}}{n_{\text{B}}} - \mu_{\text{E}} i_{\text{M}} - \gamma_{\text{E}0}, \quad \frac{dr_{\text{M}}}{d\tau} = \alpha s_{\text{M}} \frac{s_{\text{B}}}{n_{\text{B}}} - \mu_{\text{R}} r_{\text{M}} - \gamma_{\text{R}0} \tag{3.1a}
\]

\[
\frac{ds_{\text{B}}}{d\tau} = -\alpha s_{\text{B}} \frac{s_{\text{M}}}{n_{\text{M}}}, \quad \frac{dl_{\text{B}}}{d\tau} = \alpha s_{\text{B}} \frac{s_{\text{M}}}{n_{\text{M}}} - \mu_{\text{L}} l_{\text{B}}, \quad \frac{di_{\text{B}}}{d\tau} = \alpha s_{\text{B}} \frac{s_{\text{M}}}{n_{\text{M}}} - \mu_{\text{E}} i_{\text{B}} - \gamma_{\text{E}0}, \quad \frac{dr_{\text{B}}}{d\tau} = \alpha s_{\text{B}} \frac{s_{\text{M}}}{n_{\text{M}}} - \mu_{\text{R}} r_{\text{B}} - \gamma_{\text{R}0} \tag{3.1b}
\]

In the absence of disease, the bird equilibrium for this system is \((s_{\text{B}0}, l_{\text{B}0}, i_{\text{B}0}, r_{\text{B}0}) = (1, 0, 0, 0)\). For mosquitoes, we chose vital-rate parameter relationships to balance birth and death rates in the disease-free state. By setting \((2.1 e, f)\) and \(I_{\text{B}0} = 0\), we obtained \(\beta_{\text{M}0} = \mu_{\text{R}}(m + \mu_{\text{M}})/\mu_{\text{M}}\) which ensures the following steady-state relationship between larval and susceptible adult mosquitoes:

\[
L_{\text{M}0} = \beta_{\text{M}0} S_{\text{M}0} \quad (m + \mu_{\text{M}}) \quad I_{\text{M}0} = \frac{\phi_{\text{M}0} S_{\text{M}0} I_{\text{M}0}}{(m + \mu_{\text{M}})} = \frac{\phi_{\text{M}0} S_{\text{M}0} I_{\text{M}0}}{(m + \mu_{\text{M}})} \tag{3.2}
\]

Thus, for any given initial density of adult mosquitoes, \(S_{\text{M}0}\), the resulting disease-free equilibrium (DFE) is \((I_{\text{M}0} = 0, e_{\text{M}0} = 0, r_{\text{M}0} = 0, \mu_{\text{R}} = 0)\).

To evaluate the invasibility of this system we followed van den Driessche & Watmough (2002) in using vector notation to rewrite the equations in which infections appear in terms of the difference between \(f_j\), the rate of appearance of new infections in compartment \(j\) and \(v_j\) the rate of transfer of individuals into and out of compartment \(j\) by all other processes. Although infections arise in
Table 1. Parameters in WN model.
(Numerical estimates for bird (B) and mosquito (M) parameters in dimensional (rates are daily and probabilities are per bite) and dimensionless (rescaled by k) forms. Mean, range and biological interpretation given for dimensional form. Literature values extracted primarily for the American crow, *Corvus brachyrhynchos* Brehm, the bird that has suffered some of the highest mortality in the North American WN epidemic, and for the mosquito *Culex pipiens* spp., a major North American WN vector (Bernard et al. 2001; Spielman 2001). Sources: 1, Turell et al. 2000; 2, Turell et al. 2001; 3, Sardelis & Turell 2001; 4, Hayes & Hsi 1975; 5, Mpho et al. 2002; 6, Oda et al. 1999; 7, Walter & Hacker 1974; 8, Reisen & Siddiqui 1979; 9, Mogi et al. 1984; 10, Reisen et al. 1989; 11, Work et al. 1955; 12, McLean et al. 2001; 13, Komar et al. 2003.)

<table>
<thead>
<tr>
<th>dimensional</th>
<th>mean (range)</th>
<th>interpretation (sources)</th>
<th>dimensionless</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.09 (0.03–0.16)</td>
<td>M per capita biting rate on crows*</td>
<td>—</td>
</tr>
<tr>
<td>b</td>
<td>0.88 (0.80–1.00)</td>
<td>WN transmission probability, M to B</td>
<td>(\alpha_m = ab/k)</td>
</tr>
<tr>
<td>c</td>
<td>0.16 (0.02–0.24)</td>
<td>WN transmission probability, B to M</td>
<td>(\alpha_c = ac/k)</td>
</tr>
<tr>
<td>(\beta_M)</td>
<td>0.537 (0.036–42.5)</td>
<td>M per capita birth rate (see § 3)</td>
<td>(\phi_m = \beta_M / k)</td>
</tr>
<tr>
<td>m</td>
<td>0.068 (0.051–0.093)</td>
<td>M per capita maturation rate, larvae to adults (4, 5)</td>
<td>(\eta = m / k)</td>
</tr>
<tr>
<td>(\mu_A)</td>
<td>0.029 (0.016–0.070)</td>
<td>M adult per capita mortality rate (6, 7)</td>
<td>(\mu_A = \mu_A / k)</td>
</tr>
<tr>
<td>(\mu_L)</td>
<td>1.191 (0.213–16.9)</td>
<td>M larval per capita mortality rate</td>
<td>(\mu_L = \mu_L / k)</td>
</tr>
<tr>
<td>(k)</td>
<td>0.106 (0.087–0.125)</td>
<td>WN per capita transition rate, exposed to infected (3)</td>
<td>—</td>
</tr>
<tr>
<td>(\mu_V)</td>
<td>0.143 (0.125–0.200)</td>
<td>B per capita mortality rate from WN (11, 12, 13)</td>
<td>(\mu_V = \mu_V / k)</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>B per capita recovery rate from WN (11, 13)</td>
<td>(\gamma = g / k)</td>
</tr>
</tbody>
</table>

* The New York City Audubon Society database (http://www.nycas.org/) lists 26 common passerines, swifts, doves and kingbird species breeding within the city limits. In annual counts from 1988–1989 to 1998–1999, American crows constituted ca. 27% (range of 9–48%) of these birds in six Audubon Society Christmas Bird Count database circles in the Brooklyn, Queens, Suffolk Co., Nassau Co. and Staten Island regions of New York (NYBR, NYCS, NYNN, NYQU, NYSN, NYSI) (http://www.audubon.org/bird/cbc). If we assume that *Culex* spp. mosquitoes bite only birds, that 27% of bites are on crows and that a female bites once every three days (Alameda County Mosquito Abatement District; http://www.mosquitoes.org/Mosquitoes/LifeCycle.html), we obtain the mean biting rate.

\[\frac{d}{dt} \left[\begin{array}{l} i_0 \\ s_m \\ e_m \\ i_m \end{array} \right] = \left[\begin{array}{cccc} \alpha_b i_0 s_m & 0 & \gamma_b & 0 \\ \mu_b s_m & \mu_s e_m & \gamma_b & 0 \\ \mu_s e_m & \mu_m i_m & \gamma_m & 0 \\ 0 & \mu_m i_m & 0 & \gamma_m \end{array} \right] \left[\begin{array}{l} i_0 \\ s_m \\ e_m \\ i_m \end{array} \right]. \quad (3.3) \]

The corresponding Jacobian matrices, \(\mathcal{F} \) and \(\mathcal{V} \), describe the linearization of this reduced system about the DFE,

\[\mathcal{F} = \left[\begin{array}{cccc} \alpha_b i_0 s_m & 0 & \gamma_b & 0 \\ \mu_b s_m & \mu_s e_m & \gamma_b & 0 \\ \mu_s e_m & \mu_m i_m & \gamma_m & 0 \\ 0 & \mu_m i_m & 0 & \gamma_m \end{array} \right], \quad \mathcal{V} = \left[\begin{array}{cccc} 0 & 0 & \mu_s + \gamma_b \\ 0 & \mu_s + 1 & 0 \\ 0 & -1 & \mu_m \end{array} \right], \quad (3.4) \]

and the disease basic reproduction number, \(R_0 \), is given as the dominant eigenvalue of \(\mathcal{F} \mathcal{V}^{-1} \) (Driessche & Watmough 2002):

\[R_0 = \sqrt{\frac{\alpha_b \mu_m (1 + \mu_m)}{\mu_s \gamma_m / (\mu_s + \gamma_m)}} \quad (3.5) \]

\(R_0 \) is defined as the number of secondary infections deriving from a single primary infection in a population of susceptibles (Anderson & May 1991). When \(R_0 < 1 \) the DFE is locally stable; when \(R_0 > 1 \) it is locally unstable, and disease introduction leads to an outbreak.

The biological meaning of \(R_0 \) is readily interpreted from the dimensional parameters. The first term under the square root represents the disease \(R_0 \) from mosquitoes to birds as the transmission probability (ab) multiplied by the adult mosquito infectious lifespan (1/\(\mu_A \)). The second term represents \(R_0 \) from birds to mosquitoes as the transmission probability (ac) multiplied by the number of initially susceptible mosquitoes per bird (\(S_{M0} / N_{B0} \)) that survive the exposed period (k/[k + \mu_L]), multiplied by the bird’s infectious lifespan (1/([\mu_V + g])). The product gives the total disease \(R_0 \) from vector to vector or from host to host. The square root represents the geometric mean \(R_0 \) for an average individual of both species combined. Mosquito birth, maturation and larval mortality rates indirectly influence \(R_0 \) through the steady-state condition for adult mosquito mortality (equation (3.2)). Setting \(R_0 = 1 \)
returns the critical equilibrium mosquito level, \(s_{m0} \), above which the virus will invade a constant population of susceptible mosquitoes:

\[
s_{m0} = \frac{\mu_l (1 + \mu_s) (\gamma + \mu_a)}{\alpha_s \alpha_m} = s_{m0}^*.
\]

(3.6)

We used linear analysis to calculate the disease growth rate for the seasonal model extension. For the DFE \((I_{m0}^* I_{s0}^* I_{b0}^* I_{m0}^* I_{s0}^* I_{b0}^*) = (1, 0, 0, 0, \phi_{m,s,m0}, \phi_{s,m0} / H9262 / H9261 / H5110) \) we defined small perturbations in each variable, \((I_{m0} I_{s0} I_{b0} I_{m0} I_{s0} I_{b0}) \). The corresponding Jacobian matrix, \(J \) (which reduces to five dimensions since the \(s_m, I_m, I_s, I_b, \) terms decouple), describes the linearization with respect to \((I_{m0} I_{s0} I_{b0} I_{m0} I_{s0} I_{b0}) \):

\[
J = \begin{pmatrix}
-\mu_e - \gamma & 0 & 0 & 0 & 0 & \alpha_0 \\
0 & -\eta - \mu_l & \phi_m & \phi_m & 0 & 0 \\
-\alpha_m s_{m0} & \eta & -\mu_s & 0 & 0 & 0 \\
\alpha_m s_{m0} & 0 & 0 & -\mu_s - 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -\mu_a
\end{pmatrix}
\]

(3.7)

This yields the characteristic polynomial in \(\lambda \):

\[
0 = \det(\lambda I - J) = \lambda^6 + a_5 \lambda^5 + a_4 \lambda^4 + a_3 \lambda^3 + a_2 \lambda^2 + a_1 \lambda + a_0,
\]

where \(I \) is the \(5 \times 5 \) identity matrix and \(a_1 > 0, a_2 > 0 \). The zero root of the fifth-order polynomial (equation (3.8)) comes from the steady-state condition (equation (3.2)) that makes the disease-free mosquito population \((\phi_{m,s,m0}, \phi_{s,m0}, \phi_{m0}) \) is neutrally stable to changes in \(s_{m0} \). For \(a_1 > 0 \), by the Routh–Hurwitz conditions, all roots of the cubic polynomial in \(\lambda \) (equation (3.8)) have negative real parts. The disease outbreak threshold is thus when \(a_2 = 0 \) or, equivalently, when zero is the largest eigenvalue of \(J \). In biological terms the threshold may be thought of as a disease growth rate of zero, which corresponds directly to the reproduction number \(R_0 = 1 \).

4. MODEL PREDICTIONS

Numerical simulations illustrate the predicted course of a WN outbreak (figure 2). Using mean parameter values (table 1), we calculated that the critical initial mosquito population for a WN outbreak at the DFE is \(s_{m0} > s_{m0}^* = 4.6 \) adult female mosquitoes per initial bird (range of 0.37–1614, using minimum and maximum parameter values and fixing \(k = 0.106 \)). The exact value of \(s_{m0}^* \) depends on parameter values. American crows die quickly from WN infection (high \(\mu_s \)) and are not known to recover to immunity (\(\gamma = 0 \)). Using estimates for species with lower \(\mu_s \) or higher \(\gamma \) (Work et al. 1955; Hayes 1988; Rappele et al. 2000; Bernard et al. 2001; Langevin et al. 2001; Komar et al. 2003) would decrease or increase \(s_{m0}^* \) respectively.

We compared our model predictions with disease prevalence data from the New York WN epidemic in 2000, using mean parameter values. For crows, public health data reported the proportion, \(p_s \), of dead individuals that tested positive for WN (\(p = 0.23–0.67 \); Bernard et al. 2001). Although our model omits bird vital dynamics, we can estimate \(p \) as follows. Assuming a 4 yr crow lifespan in the wild and a season of 147 days (\(\tau = 9.4 \)) where the final proportion of dead birds is \(x_{s14} \), and assuming that WN-infected birds do not die of natural causes, we estimate \(p = x_{s14} [x_{s14} + 0.25 (1 - x_{s14})] \). Given low, medium, and high initial mosquito levels, the model predicts that 13%, 46% and 96% of crows die from the virus (\(x_{s14} \) in figure 2a,e,f), yielding \(p \approx 0.37, 0.77 \) and 0.99. The two lower predictions encompass the reported range for infectious mosquitoes, the model predicts peak disease prevalences of \((\mu_{m}/\mu_{m0} = 0.002, 0.01 \) and 0.02 for the three initial levels in figure 2b,d,f). The two lower predictions encompass the reported range for vectors Culex pipiens and C. pipiens-restuans (0.004–0.0075; Bernard et al. 2001); the third is somewhat above this range. These results indicate that the lower \(s_{m0} \) values of the first two simulations (figure 2a–d) are more representative of the New York 2000 outbreak dynamics than that of the third (figure 2e–f). Further empirical data collection will allow more detailed model sensitivity analysis.

5. PUBLIC HEALTH IMPLICATIONS

Public health programmes currently use dead-crow density as a WN outbreak indicator (CDC 2002; New York City 2003). Model simulations show that dead-crow numbers increase much faster than numbers of live infected birds or infected mosquitoes (figure 2), which confirms that, logistics aside, monitoring dead crows is most effective in identifying an outbreak (unless of course WN immunity were to develop).

Although public health surveillance uses dead crows, our model uses the mosquito-to-crow ratio (\(s_{m0} \)) as a WN indicator. The two metrics can be related by using repeated numerical simulations to obtain a relationship between \(s_{m0} \) and the resulting crow survival (figure 3a). For a given season, \(s_{m0} \) can then be inferred from the observed loss of crows. For future seasons, the desired mosquito control level can be calculated (figure 3a), and the subsequent decrease in disease prevalence will reduce the infection risk for all hosts. Current WN control targets mosquitoes (New York City 2003). The nonlinear relationship between \(s_{m0} \) and \(\mu_s \) (equation (3.6)) illustrates that a small increase in mosquito mortality can lead to a disproportionately large increase in the outbreak threshold. By contrast, reducing crow densities would be expected to enhance disease transmission (unless very low densities limited mosquito biting rates) since \(R_0 \) scales positively with the mosquito-to-bird ratio (equation (3.5)). For New York in 2000 (figure 2a–d), a 40–70% reduction of the initial mosquito population, i.e. reducing \(s_{m0} \) from 7.5–15 to less than 4.6, would have prevented the WN outbreak. Bird control, however, would have had the opposite effect.

6. TEMPORAL EXTENSIONS

We consider both within- and between-season extensions. Although the effects of continuous mosquito fluctuations could be computed numerically, we employed a discrete seasonality that permits analytical results and a
Figure 2. Numerical simulations of the proportions of crows (a,c,e) and relative numbers of mosquitoes (b,d,f) predicted by WN model for a steady-state mosquito population over a season lasting 14 days. (a,c,e) The proportions of susceptible (s_m, solid line) and dead (x_b, dashed line) birds on the left axis and infectious birds (i_b, dotted line) on the right. (b,d,f) The relative numbers of susceptible (l_m, solid line) and larval (l_m, dot-dashed line) mosquitoes on the left axis and exposed (e_m, dashed line) and infectious (i_m, dotted line) mosquitoes on the right. A small addition of infected mosquitoes to a disease-free system ($i_m = 0.01$) amplifies (a,b) to a mild outbreak when the initial level of susceptible mosquitoes, s_{m0}, is slightly above the threshold level s^*_m ($s_{m0} = 7.5$ mosquitoes per bird); (c,d) to a moderate outbreak leading to 50% bird mortality at higher levels ($i_{m0} = 15$); and (e,f) to a severe outbreak with almost 100% bird mortality when $i_{m0} = 30$. The three simulations correspond to points x, y and z, respectively, in figure 3a.

Useful graphical interpretation. For a constant mosquito population the outbreak threshold is s^*_m, but for a seasonally variable population the threshold depends on the average population level (figure 3b,c). We represent mosquito seasonality as a simple step function (figure 3b), giving the mean mosquito population over the year,

$$\bar{\tau}_m = \frac{(t_s s^{\tau}_m + t_b s^{\tau}_m)}{(t_s + t_b)},$$

where t_s and t_b are the total times spent at population levels s^{τ}_m and s^{τ}_b respectively. The mean disease growth rate is then given by

$$\lambda = (t_s \lambda_s + t_b \lambda_b)/(t_s + t_b),$$

where λ_s and λ_b are the largest eigenvalues of f evaluated at s^{τ}_m and s^{τ}_b respectively (equation (3.8)). This gives a geometric growth ratio for infectives over the season of $e^{\lambda \tau_s} \approx e^{\lambda \tau_s} e^{\lambda \tau_b}$. Setting $\lambda = 0$ gives the critical average mosquito level, $\bar{\tau}_m > s^*_m$, above which WN will invade a seasonally variable population (figure 3c). For example, when the mosquito population varies 16-fold between low and high levels, $\bar{\tau}_m$ is approximately 1.6 times higher than s^*_m (figure 3b,c). Provided that the lower mosquito population level is below s^*_m, outbreak control requires only that the higher level be reduced such that $\bar{\tau}_m < s^*_m$. In other words, where mosquito populations vary seasonally, intensive spraying to reduce the higher level alone may control the disease. We therefore expect WN to be easier to control in northern more seasonal regions than in southern regions.

This graphical approach, which can be extended to additional population levels, illustrates a framework that could help to maintain mosquito populations below WN outbreak levels. Although our model indicates that local WN eradication could be achieved by intensive mosquito control, global eradication would probably be impossible since re-infection could occur through bird dispersal and migration from disease reservoirs outside the control region.

A multi-season model can be constructed from sequential iterations of the single-season model, with net bird reproduction and infectious-mosquito over-winter survival (Nasci et al. 2001; Turell et al. 2001) occurring in a single...

time-step between seasons (figure 3d). Since the dimensionless bird populations are expressed as fractions of the initial density, each season begins with $n_b = n_h = 1$. Rescaling the fractional densities annually allows actual densities to be predicted.

This within-season model is an important first step in understanding WN dynamics and in highlighting the data needed for effective management. Our approach differs from those of previous models (Lord & Day 2001; Thomas & Urena 2001; Theophilides et al. 2003) in focusing on a mechanistic rather than a statistical representation of disease dynamics, and in using an analytical as well as numerical analysis.

The model will be extended biologically to additional bird species, spatially to consider bird migration and latitudinal variation in host and vector population dynamics and dispersal (Rappole et al. 2000; Peterson et al. 2003; Theophilides et al. 2003), and temporally as in figure 3d. The analytical methods and disease-control tools presented here for WN can be readily applied to other complex host–vector systems.

This work was supported by a University of Alberta studentship (T.de-C.-B.), Canada Research Chair and NSERC (M.A.L.) and the Killam Trust and NSERC (M.J.W.). The authors thank H. Maclsaac for encouraging them to work on this problem, and P. van den Driessche, J. Watmough and two anonymous reviewers for their valuable comments.

REFERENCES

As this paper exceeds the maximum length normally permitted, the authors have agreed to contribute to production costs.